A Friendly Peer-to-peer Network

Yongrim Rhee
Master’s Thesis
ICT/ECS,

Kungliga Tekniska Hogskolan,
Stockholm, Sweden

Supervisor: Erik Aurell
Examiner: Mihhail Matskin

15 June 2006

Abstract

Peer-to-peer systems are typically designed to be deployed in an open envi-
ronment at a global scale. Such deployment must ensure that peer cooperate
and contribute. Without cooperation and contribution of peers, the quality of
service of the overall system degrades.

From economics point of view, free riders exist when resources consumed by
peers are public and cost free. Incentives algorithms in peer-to-peer systems at-
tempt to reduce free rider problem over the public domain. Incentives, however,
already exist in social groups in society. In Peer-to-peer groups formed by such
social groups, people are more likely to contribute their computing resources and
exhibit altruistic behavior. Furthermore, free riders are less likely to exists in
smaller scale peer-to-peer networks. Smaller but many instances of peer-to-peer
networks can help form peer groups from existing social networks. To this end,
we implement a way of creating and controlling privatized peer-to-peer overlay
network using the DKS structured overlay network.

Using the privatized DKS, we build a decentralized peer-to-peer ftp server
called Fortress FTP.

Contents

1 Introduction
1.1 Contributions e e

1.2 Thesis Overview o i e

2 Related work

21 PeerToPeer
2.2 Deployed P2P Systems oL
2.3 Distributed Hash Tables
2.4 Distributed Storage using DHT
241 PAST
242 CFS
243 OceanStore e
2.5 Content Distribution 0L,
2.5.1 BitTorrentContent Distribution Protocol

3 DKS, a DHT

3.1 Distributed Hash Tables
3.1.1 Lookup
3.1.2 Self Management
3.1.3 Handling Failures and Data Resilience

3.2 DKS
321 LookupinDKS.
3.2.2 Topology Maintenance
3.23 Replication o

4 Privatizing DKS

4.1 Asymmetric Key Exchange

4.2 KeylInsertion e

43 KeyRemoval ol

10
10
11
11
12
13
13

15
15
15
16
17
17
17
17
19

Friendly P2P Networks

5.1 Background and motivation

5.1.1 F2F networks
5.2 Benefits

5.3 Enabling Friendly Network Concepts in DKS

Peer Group Location Service

6.1 Design
6.2 Implementation 0
Application: Fortress FTP
7.1 Infrastructure L
7.2 Authenticated Data Structure
7.3 Data Availability o oL
7.4 Coping with Data Migration.
7.4.1 Data Block Replication
7.4.2 Data Maintenance,
7.5 Load balancing
7.6 Prototype Implementation

7.7 Using Fortress FTP
Evaluation

Conclusion

26
26
27
28
29

30
31
31

33
34
35
37
37
38
38
38
39
40

42

45

List of Figures

3.1
3.2

3.3

4.1
4.2
4.3

5.1

7.1

7.2

7.3

A ring and a clique topology
Intervals for each level maintained by DKS node 0 where N = 64

A lookup by node 17 for key 63 in DKS where N = 64 and k =
4. Solid dots indicate nodes. Dotted arrows indicate the original

interval and the solid arrows indicate the actual interval.

Pseudo-code for authentication for new peer.
Pseudo-code for group authentication.
Authentication protocol between the joining node and the boot-

strapnode. L L
Relationship between P2P, F2F, Friendly networks.

Structure of the Fortress FTP. The distributed file system is a
virtualized resource created on top of DKS. Fortress FTP servers
access the same virtual distributed file system. Data blocks are
not stored in the distributed file system - only the directory struc-
ture is stored using DKS. Data blocks are exchanged among peers
though the Data Block Storage module.
An update to a directory will cascade all the way up to the root
block. All the blocks must be retrieved, updated, and reinserted
into DKS. The directory block entries map to keys in DKS while
the horizontal entries in the file block indicate entries that are
retrieved through Data Block Storage module.
Client server interaction in active mode. In active mode the
Fortress FTP servers can pick the server to send the file through

election.

24

7.4

8.1

Client server interaction with PASV command. In passive mode
the client is informed the address of the server that can provide

the best service.. o oo

Peer disk usage for various number of peers.

Acknowledgments

The work for this master’s thesis was conducted at SICS (Swedish Institute of
Computer Science) as a partial requirement for the master’s degree at Kungliga
Tekniska Hogskolan.

Firstly, I sincerely thank Professor Erik Aurell for his relentless support
and sound advice. His encouragements and experience were instrumental in
scheduling and completing the project on time. Sameh El-Ansary has been
indispensable in lending me his critical mind. Sameh’s tenacity in solving prob-
lems was a source of inspiration. I especially would like to thank Per Brand and
SICS for providing me with the equipment and space conducive to completing
the project. The completion of this thesis would not have been possible without
the expertise and the hands of experience of the DKS system of Antonis Thodis
and Birgir Stefansson.

Finally, I thank mom for being a sponsor and an inspiration in life.

Chapter 1

Introduction

The global interconnectivity between computers provided by the Internet brought
about the development of many distributed applications and triggered the inter-
est and research in distributed systems by the scientific community. According
to Hobbes’ Internet Time line [26], the number of computers with a registered
IP address was well over 300 million in 2005, and the number continues to grow.
With each personal computer being a potential server in a peer-to-peer system
combined with the ever increasing hardware performance, the Internet today
provides a unique computing environment where peer-to-peer applications can
be deployed.

An introduction to a P2P topic cannot be complete without the perhaps
hackneyed reference to Napster[22]. Arguably, Napster popularized the P2P
concept. Its server-client model allowed clients to find and share music files
stored on other clients by storing search meta-data on its server. As it is with
all the server-client model, the server in the Napster model was a single-point
of failure and a point of bottle neck. Hence the Napster model did not scale
well. A number of other distributed applications have appeared since Napster.
Among them, file sharing applications remain especially popular. However,
many of these earlier file sharing applications, though distributed, did not take
into consideration the critical properties that define today’s P2P systems such
as scalability, robustness, and fault-tolerance, and thus was limited in many
aspects of their designs. In addressing these issues, a number of peer-to-peer
systems have emerged with more robustness in their designs.

Among the peer-to-peer infrastructures that have appeared recently, dis-
tributed hash tables (DHT) in particular have emerged as a well structured
decentralized P2P data structure. DHTs allow correct routing of a key based

lookup message with efficient lookup cost guarantees. DHTs can be the ground

laying infrastructure for more complex applications. One of such applications
is data storage. Several designs and implementations of data storage using dis-
tributed hash tables already exist, namely CFS [8], OceanStore [18], and PAST
[10].

Many of the existing peer-to-peer systems ambitiously attempt to create
systems at a global scale. In such systems, a huge number peers could potentially
join the system. Despite the large numbers that appeals to scalable peer-to-peer
systems in open networks, incentives must exist in such systems in order for peers
to remain in the system and contribute to the system. Without such incentives,
self interested users only consume resources without contributing back to the
system. Such was the case with Della - it was discovered that nearly 70%
of Gnutella users did not share files and over 50% of the search results came
from 1% of the peers [1]. It is thus evident that level reciprocation in an open
environment can be expected to be nothing short of pitiful without incentives.

Incentive mechanisms often model our own complex social models. Repu-
tation based incentive mechansims proposed in [16] closely mimick reputation
system in real life. TFT (Tit-for-tat) algorithm in use by the BitTorrent proto-
col [7] closely resembles how people tend to reciprocate to those who contribute
in the first place. Barry in [4] even suggests that computer networks is a tech-
nology that affords us to extend our social networks.

Perhaps inspired by the early success of file sharing applications, peer-to-peer
systems have been most often been envisioned as a global and public system.
But just as people are less likely to help strangers than their friends, such peer-
to-peer systems exhibit low cooperation and contribution from peers. Free riding
peers plagued the earlier P2P systems and new proposals introduce incentive
techniques to reduce or eliminate free riding in a P2P system[12]. On the other
hand, if peers can be chosen by the administrators so that peers are known to
exhibit positive cooperative behaviors before hand, the P2P system will have
much higher reciprocation rate than publicly accessible systems without the use
of incentive mechanisms.

People within a same social network have strong incentives to cooperate with
each other; if members of a well reciprocating social group can form a peer-to-
peer network with altruistic intentions, then it would obviate the need to build
incentive mechanisms for its peer-to-peer network. In fact, having incentive
mechanisms may hinder their altruistic preferences.

Private DKS extends the functionality of the Distributed K-ary System
(DKS) [?] by securing communications between peers and requiring authen-

tication to join the system. This leaves the administration of peer membership

up in the control of the users. Fortress FTP uses the Private DKS to build a

distributed FTP server that is robust, peer-to-peer, scalable, and fault-tolerant.

1.1 Contributions

Peer join authentication has been implemented in 900 lines of Java code. The
authentication protocol is added to existing code of the DKS System. The
authentication protocol makes use of the public key infrastructure.

Fortress FTP has been implemented by modifying the Apache FTP Server
and creating a distributed storage which the server accesses to it. The modified
code adds about 3000 lines of code. Fortress FTP’s advantages over other
distributed FTP servers are that it provides load balance, fault tolerance and

self-management in a robust and scalable way.

1.2 Thesis Overview

Related work section summarizes the peer-to-peer systems that have been most
influential in writing this thesis. Section 3 is a review of the DKS, a distributed
hash table developed at SICS. Section 4 explains how the DKS system is secured
and privatized. Section 5 discusses how the privatized peer-to-peer network can
be applied. The private group location service using the DKS is discussed
in section 6. Section 7 overviews the architecture and implementation of the

Fortress FTP in detail. We conclude the paper with in section 9.

Chapter 2

Related work

2.1 Peer To Peer

Peer-to-peer distributed systems remove the notion of client and server by al-
lowing nodes to act as both server and client. This distributes the service func-
tionality over the participating peers instead of placing the burden of service
on a limited number of servers. Although not a panacea to network computing,
peer-to-peer techniques have seen various successful deployments over the recent
years, most notably in areas of file sharing and IP telephony.

Besides the removal of centralized control and failure, scalability is a property
that characterizes peer to peer systems. As the number of participating nodes
increase in a system, so does the resources that can be provided by the nodes.
Efficient management and utilization of resources that scale well as the number
of participating peers increase is an important goal in peer-to-peer systems.

Removal of the centralized server means that the role of administration must
also be distributed. Because it would be impractical to manage every single peer
by hand, peer-to-peer infrastructure must self-organize and mange the peers as
they join and leave, as well as tolerate failures and malicious behavior.

Finally, a peer-to-peer system must take into consideration that the nodes
in the system will most likely differ in their network capacity, computational

power, and memory and storage capability.

2.2 Deployed P2P Systems

In the late 90s, Napster [22] file sharing service provided its users the ability

to share files through its indexing server. Although file transferred took place

directly between peers, the centralized indexing server was responsible for lo-
cating other peers and search queries. The centralized server is often cited as a
point of failure and bottleneck. Napster model is hence not considered a robust
nor scalable.

Gnutella [15] builds an ad hoc network where search queries can be flooded.
It certainly has its advantages over the Napster’s centralized model in terms
of scalability and robustness. Due to the ad-hoc overlay network the Gnutella
protocol builds, searching was not comprehesive and inefficient.

Peer-to-peer systems continues to emerge as a prevailent technology espe-
cially in Internet file sharing. Other applications for peer-to-peer technologies
are beginning to appear. Even so, most peer-to-peer technologies revolve around
data storage. Overnet is an example of a completely decentralized peer-to-peer
system based on a distributed hash table (DHT) implementation called Kadem-
lia [20]. Detailed discussion of DHT follows in section 3. Current generation

P2P networks such as FreeNet [6] augment P2P features by provide anonymity.

2.3 Distributed Hash Tables

Distributed hash table is a peer-to-peer overlay network that efficiently routes
messages to a peer given the peer identifier. Unlike existing ad-hoc overlay net-
works such as the aforementioned Gnutella protocol, the overlay network created
by a distributed hash table is said to be structured because it provides guaran-
teed delivery of messages to the correct peer in the system while the number of
hops required to deliver the message scales roughly logarithmic to the number
of peers in the system. The dynamic environment that is characteristic of a
peer-to-peer system requires that the DHT overlay networks be fault-tolerant

and self managing as peers leave, join and even fail.

2.4 Distributed Storage using DHT

Distributed storage is one of the well explored idea built on top of the dis-
tributed hash table concept. The desirable properties upon which DHT is built
makes it an ideal substrate to build peer-to-peer storage applications on top
of. PAST [10], CFS [8], and OceanStore [24] implement distributed file sys-
tems using Chord, Tapestry, and Pastry, respectively. All tree implementations
seek to create persistent wide area data storage that are self organizing and self
managed.

Cryptographic hashing is a widely used in implementing distributed storage

10

systems. Cryptographic hashes are quasi-random and helps in evenly distribut-
ing the hash values within the hash value space. This feature is especially at-
tractive to distributed systems because key assignments to data objects can be

somewhat evenly distributed when they are generated by hashing their content.

2.4.1 PAST

PAST generates a 160-bit file Id and stores the file at a node which matches the
most significant bits of the file Id to the node’s 128-bit identifier. Both folds
and node Ids are generated using cryptographic hash of the file and nodes meta
information. This helps in probabilistically increasing diversity of locality and
capability as well as uniformly distributing the nodes in the identifier space.
Replication factor k& can be specified for a file and the replicas are stored at k
nodes that have the closest matching id to the most significant 128-bits of the
160-bit file Id. Again, because of the uniform distribution of the nodes, the
replicas are just as well replicated over k£ diverse nodes.

PAST’s security model provides users with anonymity, privacy of data and
enforces quotas. The model revolves around the use of smart cards. Anonymity
is provided by using the smart cards signature as a user’s pseudonym. The smart
card is also used to create node Ids by cryptographically hashing the public key
contained in the smart card. The insert operation verifies the integrity of the
data by returning a certificate that contains the secure content hash of the
file. Quota information is maintained on the smart card to prevent users from

exceeding their given quota.

2.4.2 CFS

CFS [8] is a decentralized file system developed using a layered approach. Sim-
ilar to the file system semantics deployed in UNIX, CFS creates file system
structure at a data block level. A data block storage layer, called Dhash, is
built over the Chord routing layer to provide data block storage and retrieval
using identifiers to data blocks. The block ID is determined by cryptograph-
ically hashing the block’s content. This allows the content of the data block
to be verified using the block’s ID. Another benefit is that it probabilistically
spreads the blocks among the key space thereby providing a good distribution
of the data blocks among the peers. Dhash data blocks are typically in tens of
kilobytes.

The CFS file system layer is built over Dhash. Except for the root block,

entire file system structure is created using directory blocks, inode blocks and

11

data blocks all of which are inserted and retrieved using Dhash using simple put
and get interfaces. A root block is inserted using the public key as its identifier,
and is signed with the public key to enable verification of the root block.

CFS is intended to provide a distributed file system that scales well while
providing performance that is competitive with the current point-to-point trans-
fer protocols. Having small block size (tens of kilobytes) and distributing blocks
to many peers balances the load among the peers. Block are cached at nodes
that are on the lookup path of the block to provide additional load balanc-
ing. Network latency for a block lookup is masked by fetching multiple blocks

concurrently.

2.4.3 QOceanStore

OceanStore’s design aims to provide highly durable storage in a self managing
and self organizing system that is resilient to fault and failures. Byzantine
agreement protocol, erasure encoding and Tapestry routing scheme is used to
satisfy these requirements.

Storage unit in OceanStore is captured by the notion of a data object. Data
object is composed of data blocks. Much like CFS, data blocks are identified
by the cryptographic hash value of their content. A tree structure formed by
storing the identifiers to data blocks in data blocks themselves create a version of
a data object. Because data objects are cryptographic hashes of their contents,
data object is self verifying. Any change to a data object require a new root
block and therefore a root block represents a version a data object. Because the
hashing is consistent, data blocks that remain unchanged in new versions are
still referenced by the newer root blocks. Every version of the root block is kept
by the system to allow play back of changes and is assigned a single identifier.

All data blocks are archived in the OceanStore model to provide long term
storage. To increase durability of data objects, data blocks are stored as era-
sure encoded fragments. Erasure encoding increases durability by increasing
the number of fragments while requiring only a fraction of those fragments to
reconstruct the original data. For instance, a data block can be erasure encoded
into 32 fragments while requiring any 8 pieces of the fragments are required to
reconstruct the original data block. This yields the encoding rate, defined to be
m/n (where m is the number of pieces required to construct the data and n is
the total number of fragments) to be (8/32). Storing erasure encoded fragments
has its drawbacks of increasing the storage overhead by roughly the inverse of
the encoding rate and that it is computationally expensive to reconstruct a data
block.

12

A separate group of servers called the inner ring handles updates and changes
to data object by creating a instance of the data object. This instance is called a
primary replica. All updates to a data object is directly applied to the primary
replica by the inner ring. Unlike CFS and PAST where most nodes are assumed
to be well behaved, OceanStore makes a Byzantine assumption - i.e., no more
than N/3 -1 nodes are assumed to be faulty. Byzantine agreement protocol takes
place before changes are applied to the primary replica by the participating
servers. If a primary replica does not exist it is constructed from the erasure
encoded fragments. All changes to the primary replica to secondary replicas in
a dissemination tree constructed by servers outside of the inner ring. Secondary

replicas provide caching of a data object to applications.

2.5 Content Distribution

2.5.1 BitTorrentContent Distribution Protocol

BitTorrent [5] is a content distribution protocol where the role of transferring
files are distributed among peers. Peers increase their chance to be chosen to
be uploaded to by other peers by an incentive based algorithm. Cohen asserts
that it is the incentive algorithm, called TFT (Tit-for-tat), that is responsible
for promoting cooperation among peers in [7]. Each instance of the protocol,
called a torrent, typically transfers a single file.

In order to begin a torrent session, a .torrent file is downloaded from a web
server. A .torrent file contains the address of a server that keeps track of the
peers participating in the torrent (hence called the tracker), along with meta
information about the files. Included in the meta information is the SHA-1 hash
values of the individual sections of the file so that the pieces can be verified as
they are received.

When a BT client contacts a tracker to bootstrap itself to a torrent, a random
set of peers of a set size (usually 50) is chosen from the peer list by the server
and sent to a peer. Besides the periodical statistical updates by the peer, the
tracker has no other role in a torrent session. Because each peer’s peer set is
received randomly, the peers in the set are inevitably members of other peers’
peer set. From a global view, this intersecting set of peers create a swarm of
peers.

BitTorrent peers execute algorithms according its local view of the swarm.
From the initial set of peers received from the tracker, a peer initiates con-
nections to 40 of them. 40 additional connections are allowed to be initiated

by other peers. If the total number of peer set drops below a set number, it

13

can contact the tracker to receive a new set of peers. When a connection is
initiated, the peers exchange information on pieces each peer owns. This in-
formation is represented in a sequence of bits and is continually updated by
connected peers. Having this sequence of bits for all its peers, a local peer can
then deduce which pieces are rarest among the peer set and which peers among
the peer set has pieces the local peer does not. Using this information, rarest
pieces are downloaded first from peers who have the missing pieces.

To maximize the upload bandwidth, a local peer chooses 4 peers to send
pieces to. Peers providing the fastest download rates are chosen. This tit-for-tat
algorithm, called the choke algorithm, discourages free-riding and rewards peers
that provide the best bandwidth. Every 30 seconds, however, a randomly chosen
peer is selected to send pieces to. This algorithm, called optimistic unchoke,
allows the local peer to probe for who may be able to provide a faster download
rate. It also gives newly arriving peers opportunity to grab pieces - because a
new peer needs to get pieces in order to start trading among other peers, until
the first 4 pieces are received, it downloads any 4 pieces the first chance it gets.
The choke algorithm and the optimistic unchoke algorithm are central to the

BT protocol in efficiently utilizing the swarm’s collective bandwidth.

14

Chapter 3

DKS, a DHT

3.1 Distributed Hash Tables

Distributed hash tables can be thought of as a hash table object that is shared
among many servers. Fach server is responsible for a numeric key range. All
the servers key range combine to cover the entire predefined key range of a
distributed hash table. The servers therefore must keep routing tables so that
hash table operations put (key, value), get(key), remove(key) can be per-
formed by the server responsible for the key and that the request is routed cor-
rectly and efficiently. This is referred to as key based routing. The key space is

often visualized in a circle to represent its modular arithmetic.

3.1.1 Lookup

The lookup operation, or routing, is fundamental to distributed hash tables. The
put, get, and remove operations all require lookup as a part of its operation.
Each node keeps a routing table to a number of other nodes in the system. There
must exist a balance between the size of the routing table and the number of
nodes in the system for the overlay network to remain scalable. The lookup
must remain correct and efficient. In other words, a network topology must
carefully be designed with respect to scalability, correctness, and efficiency.
Imagine an overlay network where each node points to another node to form
a ring topology. In such ring topology, each node would only need a routing
table of size 1 but it would yield a linear search time. On the other hand, an
overlay network in which every node keeps a routing table of every other node
in the network (a.k.a cligue would yield a O(1) lookup time whilst the size of

routing table would be O(N) which would be much too prohibitive to maintain

15

in a dynamic network environment. See Fig. 3.1.

Figure 3.1: A ring and a clique topology

Different designs of distributed hash tables exist, for instance Chord, Pasty,
Tapestry, and DKS. Although they deploy different lookup algorithms, the idea
similar - lookup request is re-routed to nodes that are closer to the given key
in geometrically decreasing jumps until the request arrives at the node that is
responsible for the key range. Most routing algorithms resemble binary search
and yields lookup cost in number of hops of O(lg n). It is with the routing
tables that DHTs form a structured overlay network. Table 3.1 summarizes

existing hash tables and their properties.

lookup cost | routing table size
DKS O(logr, N) | O((k — 1)logg(N))

Chord O(log(N)) O(log(N))
Pastry O(log(N)) O(log(N))
Tapestry | O(log(N)) O(log(N))

Table 3.1: DHT implementations and their properties.

3.1.2 Self Management

When nodes join a DHT system, the key space partitions are assigned auto-
matically. During joins, the neighboring nodes update their routing table and
hand over the data to the new node. Conversely, as nodes leave the system, the
leaving node hands over its data items to the node. As nodes join and leave a
DHT, routing tables must be updated to maintain correctness. Nodes joining
and leaving peer-to-peer system is called churn. Self-healing of routing table

under churn is an essential feature of DHTSs.

16

3.1.3 Handling Failures and Data Resilience

To increase robustness, it is important that distributed hash tables handle node
failures and resist data loss due to failures. Chord for example uses periodic
stabilization where periodic messages are sent between nodes to detect failures.
Data is often replicated over nodes to varying degrees in the distributed hash

tables to increase resilience to data loss.

3.2 DKS

DKS (Distributed K-ary System) [19] is a distributed hash table. Unlike most
existing DHTs, DKS aims to provide a generalized DHT infrastructure that
is customizable to application specific needs. An instance of a DKS system
is defined by DKS(N,k,f) where k is the configurable search arity within the
network and N is the maximum number of nodes that can be in the overlay

network. f specifies the replication factor.

3.2.1 Lookup in DKS

Each node in the DKS system maintains log, N levels, and each level contains
k consecutive intervals. Figure 3.2 represents intervals in 3 levels. The interval
length d at level [is defined by:

d=N/(k)

For each level the intervals begin at the node’s identifier. Pointers to the first
node that lies within each interval is kept in a routing table. A lookup begins
by locating the interval which the key lies and the node referenced by the cor-
responding pointer. If the node does not hold the data item, then the lookup is
recursively called to node. This effectively creates a k-ary search tree. Due to
the k-ary tree DKS constructs for its lookup, the lookup cost in DKS is O(logy,
N) while the routing table size is O((k — 1)logk(N)).

3.2.2 Topology Maintenance

Maintaining routing tables as nodes join, leave and fail is essential to the ro-
bustness of an overlay network. In a DHT, because it is a structured overlay
network, it is critical that the routing tables of nodes must ensure correctness.

Intuitively, when nodes join a DHT network, it must notify all nodes that
should point to it. Nodes leaving the network informs all the nodes that are

pointing to it that it should point to its successor Such graceful departures

17

0123 0 4

48

32

Figure 3.2: Intervals for each level maintained by DKS node 0 where N = 64
and k = 4.

6263

Figure 3.3: A lookup by node 17 for key 63 in DKS where N = 64 and k = 4.
Solid dots indicate nodes. Dotted arrows indicate the original interval and the

solid arrows indicate the actual interval.

allows nodes to self-organize in stepwise manner. Of course, node failures must
also be taken into account when constructing a robust peer-to-peer system.
Most DHTSs use periodic stabilization to detect node failures where messages
are periodically sent to nodes in the routing table to check if they have failed or
not. A couple of issues to using this technique is that it steadily uses bandwidth
and that the stabilization messages should be adjusted according to expected
rate of churn - that is, if the rate at which stabilization messages are sent is
high while the churn rate is low, then the stabilization messages can be wasteful
whereas having too low of a rate would result in incorrect routing table entries.

DKS generalizes node failure events and node departure events into a single
leave event through the use of a technique called correction on change [14].
When nodes either depart the system or fail, the affected nodes, that is, the

nodes that have pointers to the said node, must be notified of the node so that

18

the pointers on each of the affected node can be updated. Notification of those
nodes can be done by the node that leaves, or by the node that detects the
failed node. Using this technique, amount of stabilization messages sent by

DKS depends solely on the level of dynamicism of the overlay network.

3.2.3 Replication

Most existing DHT's use successor-lists to store a node’s replicated data at its
successors. The rationale is that if the nodes are diversely distributed over
the identifier space the DHT, then the probability that the node and all its
successors will fail simultaneously is low. There are some inflexibility to this
method. First, changes to the DHT membership means that successor lists
needs to be updated by the affected nodes, and subsequently the replicas must
also be redistributed accordingly. Another drawback to replicating at successive
nodes is that replicated copies cannot be accessed as a means to balance the
load without contacting the node first. Lastly, although a less relevant issue to
F2F networks, assigning a single node as an authority to the respective data
object allows the node to carry out a mendacity attack.

Instead of storing replicas at successive nodes, DKS stores them at a num-
ber of other nodes whose lookup operation can be independent of each other.
This is made possible by assigning every node the responsibility of ranges that
are equivalent classes of its own. This type of replication is called symmetric
replication [2]. Specifically, for a replication factor f, and the replicated copy z,

an equivalence class of z is defined as: r(i,z) =i+ (x — 1)N/f.

19

Chapter 4

Privatizing DKS

Security is a broad topic that needs to be put into context before further discus-
sion. In this thesis, we’re primarily concerned with security of network connec-
tions between nodes that form a private network using DKS. Network security
can be achieved using a number of existing methods. For instance, using tra-
ditional methods, nodes can be on an already existing private network or use
technologies such as VPN (Virtual Private Networks) to secure each connections
among peers. Unfortunately, the availability of private networks is usually out
of reach to most people. Furthermore, using point-to-point encryption such as
VPN requires that all nodes in the system have the static verification informa-
tion regarding each other and requires extensive knowledge and administration
from the users. In order to secure the private overlay network formed by the
DKS nodes in an open network (such as Internet), we use mainly asymmet-
ric key exchange to authenticate membership of a DHT and data encryption
to prevent eavesdropping by unauthorized users in the open network. The as-
sumption to be made by privatizing the DKS node is that the nodes in the
network is trusted. This assumption takes away the some of the security issues
present in peer-to-peer networks formed by untrusted peers. Specifically, it aug-
ments data privacy and confidentiality to the system. Moreover, the threat of
denial-of-service attacks from an unauthorized peer is reduced.

To provide a secure peer-to-peer network with data privacy, all communica-
tion between nodes in a DHT should be securely encrypted. Besides the secure
communication links, additional security should be provided by requiring au-
thentication by nodes joining the system. Verification of the peer using public
key infrastructure enforces authorized-only joins to the DHT system. Thus only
the node that can prove that it has the authority to be part of the system will

be able to authorize new peers to the system. Two main components enforce

20

security in a public DHT:

e Secure communication between peers. Messages and data among

peers are encrypted.

e Membership to the network excluded to non authorized hosts.
No node can participate as a peer in the DKS unless it can authenticate

itself as an authorized member.

The above steps induce a secure peer-to-peer network where the security re-

sponsibility is left up to the users of the system.

4.1 Asymmetric Key Exchange

Public key infrastructure is used to authorize peer joins in the DKS. Key ex-
change takes place through out of band methods such as email or face-to-face
exchange. In order to become a node in a DKS system, the node joining must
first obtain the public key of the group it wants to join. We rely on the fact that
in asymmetric key exchange, one’s ability to decrypt a cipher encrypted with
his public key authenticates his identity; only the authentic user will have his
own private key therefore his ability to decrypt any cipher encrypted with his
public key must mean that he is the authentic user. Each peer’s identity will
be verified using his public key using this concept. Similarly, with the group
public key, the peer group can be identified by the peer when joining.

A table of authorized peer should be present within the peer group. This
table contains the key of the authorized peer and is mapped to its hash key.
We use a collision resistant SHA1 hash of the key for the key value. The peer
list can be stored on every peer in the peer group. However, this requires that
each node store keys of every other member. Change in the list of keys means
that the change must be pushed to every node in the group as well. We take
advantage of the fact the peers that have already joined the group is part of the
DKS lookup network and store the members’ keys using the DKS system. This
way the authorized peer list is distributed and does not require notification to

every peer in the system after an update to the list.

4.2 Key Insertion

Public keys are stored in the distributed hash table DKS. Key associated to
a public key is the cryptographic hash of the key’s byte representation. Key
insertion can be performed by any of nodes already in the private DKS. Although

21

not implemented for this work, this key insertion can be further limited by
the use of passwords or verification methods to limit control of membership to
administrative users.

Once the public key is inserted in the DKS system, the get () operation can
be used to retrieve the key. This means that the peers can check only for the
existence of a certain public key without querying the entire key range of the
DKS. Indeed peers do not have to know the key values for every peer because
when joining the group, the new node will transmit the hash value of its own
key. The bootstrapping node can then lookup the key to begin the verification
process of authenticating the node. Keys are inserted into the DKS system

using the following operation:

addKey (PublicKey key)

4.3 Key Removal

Once the key is removed from the DHT, peers can no longer identify themselves
using that key. Membership control can be actively or passively managed. The
peer whose key has been removed from the system can be allowed to stay in the
system. This can be useful in situations where machines should be allowed to
be part of the system only once - the peers key can be removed as soon as it has
joined. Actively managing peer participation means that the node identifying
itself with key that have been removed from the system will be considered as
faulty and will be dropped from the system. Keys from the system is removed

using the normal remove operation of DKS:

removeKey (PublicKey key, boolean active)

4.4 Bootstrapping

In order to join a DKS instance, a peer must first obtain the address of the
bootstrapping node. Finding the bootstrapping node can be done in two ways.
First, it can be notified to the user through out of band communication. This
can certainly happen at the same time when the out of band exchange of keys
occur. The other method is to use a public directory service that provides a
name to bootstrapping address, similar to DNS. In this case, the mapping in
such systems would be the groups public key to bootstrapping information to
the group. Acquiring bootstrapping information through a directory service is

discussed in detail in chapter 6.

22

Public key must be inserted into the system before the node can join the

system. The bootstrap process is sketched in the following steps:

1. Connect to the Server(bootstrap node).
2. Client(new node) sends the hash value of the its public key.

3. Server looks up the public key using the hash value using DKS and re-
trieves the public key.

4. Server generates challenge cipher and encrypts it using the public key.
5. Client receives the cipher and must decrypt it.

6. Client sends the decrypted challenge back to the server. (Client authenti-

cation complete)
7. Client generates the challenge cipher using the group public key.

8. Server receives the cipher and must decrypt the challenge. (Server au-

thentication complete)

9. Client receives the group private key.

Once the above handshaking process steps are successfully taken, the node
can complete the join process normally. The purpose of retrieving the group’s
public key is for other newly joining clients to verify the authenticity of the P2P
group it is joining. If a client only received a symmetric key, although it can
encrypt communication from that point it would do so without authenticating
the group. Client(new node) authentication pseudo-code is in figure 4.2 and

Server (peer node) authentication pseudo-code is in figure 4.1.

n.authenticate()
n’=connection.accept()
key = dks.getKey(n’.getKeyHash())
challenge = generateChallenge(key) // generates challenge string
cipher = encrypt(key, challenge) // encrypts it
challenge’ = n’.decrypt(cipher)
if(challenge <> challenge’)
return false;
endif

Figure 4.1: Pseudo-code for authentication for new peer.

23

n.authenticateGroup(node bsNode)
challenge = generateChallenge(groupKey)
cipher = encrypt(groupkey, challenge)
challenge’ = bsNode.decrypt(cipher)
if (challenge <> challenge’)
return false;
endif

Figure 4.2: Pseudo-code for group authentication.

4.5 Trust

We use the asymmetric key exchange to authenticate users and enforce trust
within the peer group. The term trust as we have used it so far means trust
among peers in the group. The classical issue of trusting the key, i.e., the
authenticity of the key’s owner, is considered to be solved and is out of the scope
of this paper. Whether the key is authenticated using a certificate authority or
web of trust, authenticating keys can be implemented at the application level
and hence is not further discussed.

Enabling group level trust allows peer groups to form in a secure way. Priva-
tization of peer-to-peer group allows the DKS overlay network to form a friendly
network where contribution and cooperation among peers are expected to be

much higher than the peers in an open and public peer-to-peer systems.

24

DKS

New node Bootstrap node

1. Send ID

2. getKey(ID)

3. public key

4. challenge

M~

5. response, challenge

6. response

—
5. continue join...

Figure 4.3: Authentication protocol between the joining node and the bootstrap

node.

25

Chapter 5

Friendly P2P Networks

With the ever increasing processing power and storage space of the personal
computers, peer-to-peer solutions are gaining popularity in both practice and
research. Most peer-to-peer systems recognize the potential gains by enabling
cooperation between computers across the Internet. However, peers rarely con-
tribute or cooperate unless given the incentive to do so. This is because there
is a person behind every peer and a person is no more likely to help a stranger
than allow his computing resources to be shared to unknown group of peo-
ple. Furthermore, the free rider problem will always exists in a system where
payment or incentive system is not present. Private and smaller scale peer-to-
peer networks reduce the number of free rider problem and are expected to be
more cooperative. The private peer-to-peer group is expected to be formed by
members of existing social groups. The members of the group is expected to
contribute their computing resources, mainly i) bandwidth ii) storage space iii)
CPU cycles and iv) shared data. We call this type of network friendly P2P

network.

5.1 Background and motivation

Dunbar in [11] suggests that the typical size of social networks in human is ap-
proximately 150 due to the size of neocortex in human brains [11]. On the other
hand, studies in economics suggest that this size limit is due to the increasing
difficulty a social group will face in tracking free riders with larger group size.
Free rider problem is more prevalent over public resources with large number of
peers accessing it. We expect less frequency of free riders and higher level of con-
tribution by privatizing the network and thereby privatizing the data contained

within the overlay network.

26

5.1.1 F2F networks

F2F (Friend-to-friend) networks has been proposed in [25]. WASTE builds an
ad-hoc mesh type network similar to Gnutella network [15] by allowing connec-
tions from trusted peers only. Nodes in WASTE achieve anonymity by redirect-
ing data to trusted peers only. Because communication only takes place between
trusted users, the WASTE network is not expected grow beyond 50 nodes.

In creating a privatized peer-to-peer network, peering relationship between
real persons can extend to the peering relation of their machines. Unlike
WASTE, we broaden the trust issue to the group level so that the peer-to-
peer network can scale and reap the benefits of a structured overlay network of
a distributed hash table. Peer-to-peer network within a social group where in-
centives to contribute and cooperate preexist can be expected to provide higher
level of performance while providing the same benefits of a structured overlay

network.

Friendly

Figure 5.1: Relationship between P2P, F2F, Friendly networks.

Forming a purely F2F network is rather restrictive - peering relation must
be with peers that are only trusted. In fact, WASTE network is not expected
to grown beyond 50 nodes due to combined restriction of the restrictions set by
the peering relation (strictly friend-friend), and the overhead of maintaining it.
This is too restrictive in building a scalable P2P network. We propose a friendly
network where trust is transitive; i.e., we trust friends of our friends, building a
peering relation based on a web of trust.

Of course in real life, this is friendship, or trust, is not transitive in social
networks. If that was the case, perhaps the world would be a much more
trustworthy environment. Unfortunately it is not the case, and to make the

matters even more complex, the degree of trust a person may place on another

27

is a variable. The loosened requirement to form networks in this manner perhaps
allows more dynamic formation of peer groups.

Hales from [17] has suggested that it is the formation of ¢ribes that is at-
tributed to BitTorrents success, instead of the widely credited TFT algorithm.
The process in which friendly networks is formed by invitation of peers resem-
bles the forming of tribes. Although not considered in this paper, the feature
to monitor performance and contribution level of others can introduce a more
explicit incentives for peers to be more cooperative without implementing them

directly as a computed mechanism.

5.2 Benefits

In distributed systems, servers and clients must discourage, prevent, or be re-
silient to attacks through the use of security. Furthermore, in peer-to-peer
systems, systems must encourage the cooperation between peers. Though coop-
eration can be encouraged and rewarded through the system design, such design
requirements require complex and expensive system requirements while systems
that are built upon existing social forces can relax those requirements.

Data resilience is often achieved by means of creating replicated copies over
many nodes. Costs of replication is expected to be high in global systems where
users often leave after insertion of their data for later retrieval. If the nodes in
a system is expected to have much longer duration, then the costs of replication
can be reduced to a significant amount.

In publicly available systems, protection and tolerance from faults or attack
in the system is provided by the design criteria of the system. For example,
systems based Byzantine agreement protocol must assume that no more than
N/3 - 1 nodes in the system are faulty or malicious. Other systems limit the
capability of each peer so that a single peer is not given enough authority to
incur destructive actions, intentional or not, to the peer-to-peer system as a
whole.

If the control of membership of peers in the peer-to-peer system is left to
the users, then it is the users who must enforce and supervise the cooperation
among peers in the system. This does not mean that the peer-to-peer system
must be micro-managed. Specifically, if the frequency of the joins and leaves are
reduced, and permanent departures from the peer-to-peer system is expected to
be an infrequent and rare event, such system will require much less maintenance
traffic as well as reducing the data replication factor. Li in [13] points out that

DHTs in operation in Planet Labs have had stable operating conditions and

28

almost never lost data during their normal operations.

Benefits provided by friendly peer-to-peer networks:

Provide private groups

Higher level of contribution and cooperation
e Lower instances of permanent departures

Lower level of maintenance traffic

The performance of the overall peer-to-peer system is expected to be depen-
dent on contribution. In a friendly peer-to-peer network, it is up to the users to
screen possible users based on their social merits and to keep potential free rid-
ers from into the group. Deteriorating service quality of a friendly peer-to-peer

network will probably result in peers to seek out better performing peer groups.

5.3 Enabling Friendly Network Concepts in DKS

One of the expected advantage of friendly peer-to-peer environment is that
friendly networks are expected to reduce maintenance traffic significantly. In a
data intensive peer-to-peer application, maintenance traffic and data replication
costs should be minimal. It is unreasonable to expect peers to contribute large

amounts of data in an open environment.

29

Chapter 6

Peer Group Location

Service

Private peer-to-peer networks are not expected to be as large as open peer-to-
peer systems. Bootstrapping information can be private and not widely pub-
lished. We sketch a publicly available group location service that can be used
by peers to retrieve information about a group they wish to join.

One of the issues when dealing with joins to peer-to-peer overlay network
such as distributed hash tables is that because the system has many nodes, each
node can potentially become a point of entry to the overlay network. Although
it is possible to have a single static point of entry to a peer-to-peer system,
failure of such designated entry point means that nodes can no longer able to
join the system. For example, BitTorrent’s tracker has often been criticized
because it was the central point of entry for BitTorrent clients.

Early peer-to-peer systems recognized this problem and often published a list
of well known points of entry into its overlay network so that clients can select
a bootstrapping node to connect to. Such locally kept lists become outdated
if not updated often because nodes in distributed peer-to-peer systems are not
expected stay in the system permanently.

Several existing file sharing applications, namely [23] and [5], already use
distributed hash table as a peer locating system. The continually updated list
of peers are kept at a single location on a DHT. Although this is a sound
solution, it has a couple of shortcomings. One of them is that it creates points
of congestion for popular peer group lookup because the peer list resolve to a
single key. This however, can be mitigated by the use of caching mechanism on
the DHT itself. A possible solution to this is that a data structure holding such

30

list can be distributed over the DHT and is the focus of on going research.
Although a peer can expect to receive addresses of other peers at the same
time the keys are exchanged, IP addresses are often cumbersome for users to
handle and often times ISPs do not provide static IP addresses to their cus-
tomers. Peer group location service uses a DHT locate updated bootstrapping
information to the private network to simplify the join process from the users

perspective.

6.1 Design

We make the use of an open distributed hash table to implement the lookup
service. Bootstrapping information is small in size - even a list of 1000 peer
address would only be 4 kB. Having such a relatively low amount of data on the
distributed hash table while probably having more than one peer to each list
makes the lookup service relatively light weight and ideal to use a distributed
hash table.

Using the lookup service, joins to a private network takes place in two steps.
First, the bootstrapping information is obtained from the group location lookup
service. The list is used then to bootstrap to nodes in the private ring. Invalid
entries are corrected and the updated list is re-inserted back into the lookup ser-
vice. This way, the list remains updated. The newly joining node can optionally
insert itself into the list if it wants to announce itself as a possible bootstrap
node in the private network.

Each network group has a public key associated with it. It is used for nodes
joining to authenticate the group when joining. Another use it has is to name
the group during the peer group location. The group’s public key is used as a
key during the lookup for the group. Updates to the bootstrapping information
of the group is opaquely signed and can therefore be verified. Although this
does not prevent malicious peers to insert false data associated with a group’s
key, the false data can be detected by checking the signature. Additionally,
since the group lookup service is only used during the bootstrapping process, it

is not critical to protecting data in the private network.

6.2 Implementation

DKS is used as the distributed hash table to implement the lookup service. It
is implemented in Java. A single instance of DKS node to the group location

service runs concurrently with the one or more instances of DKS nodes in the

31

getGroupInfo(groupKey) ;

updateGroupInfo (groupKey) ;

Table 6.1: Interfaces to the group location service.

private network. The idea is that a machine can have multiple instances of
DKS nodes to different private networks it may belong to. During the join
phase, the bootstrapping information to all the private networks a peer is part
of are retrieved from the group location service using the group location service.

Interfaces to the group location service is shown in Figure 6.1.

32

Chapter 7

Application: Fortress FTP

Fortress FTP is a peer-to-peer FTP repository. Fortress FTP does not serve
any local data, but data is virtualized over the peer-to-peer overlay network.
It is fault-tolerant; it probabilistically guarantees that a single or a fractional
loss of peers will not affect the availability and the durability of the data. It
is self-organizing; the peer-to-peer network reacts and organizes itself to peer
joins and leaves. Furthermore, the peer balance the load automatically.

Fortress FTP is built on top of Private DKS as described in chapter 4. In
order to join an existing Fortress FTP site, the new node’s public key must have
been added to the private DKS.

The FTP (File Transfer Protocol) has been around for almost as long as
the Internet has been around. It is familiar to most Internet users and their
browsers therefore it makes an ideal interface to expose a peer-to-peer storage
system because only the providers of the service will have to be aware of peer-to-
peer nature that is at work behind the servers. We build a scalable, peer-to-peer,
data repository accessible via FTP. Having such legacy protocol exposed to users

has multiple advantages:

e Fortress FTP can provide access to the data in the peer-to-peer network

using existing FTP clients.

e Fortress FTP can be optionally configured to access data that is present

only at the local machine also.

e FTP service does not have to provided at every node of the peer-to-peer

system.

e The users of the FTP server does not have to be aware of the peer-to-peer

system that is at work behind the scene.

33

e Existing FTP protocol interface allows existing applications to access the

system.

An advantage that may not be immediately obvious is upload bandwidth
can cumulate. This is particularly useful when peers are connected with an
asynchronous bandwidth connection where up-link is significantly slower than
the down-link. Many home subscribers to commercial Internet broadband ser-
vice have this type of connection. A Fortress FTP peer will receive pieces of the
files from many different other peers. If a file can be cooperatively downloaded
from multiple peers, the limited upload capacity of a single peer will be masked.
In Fortress FTP files are divided into chunks and multiple chunks are retrieved
concurrently. The following sections describe in detail the design of Fortress
FTP works.

7.1 Infrastructure

\ 4

FTP Sever —— e > FTP Sever

v 'WData Block Storage \ 4 |
Distributed File System

DKS o EEEE— o P DKS

FTP Sever %

DKS

A
Y

Figure 7.1: Structure of the Fortress FTP. The distributed file system is a
virtualized resource created on top of DKS. Fortress FTP servers access the same
virtual distributed file system. Data blocks are not stored in the distributed file
system - only the directory structure is stored using DKS. Data blocks are

exchanged among peers though the Data Block Storage module.

The underlying distributed file system in Fortress FTP is well suited for
distributed peer-to-peer systems due to its simpler file system semantics - only
enough file system semantics are necessary to provide its upload and download
capabilities. The prototype implementation does not support resumed upload.
Fortress FTP builds a distributed file system using DKS that is accessible by

all peers.

34

The file system does not store any file data. Only the directory structure and
the location of the file blocks are stored in the distributed file system. Actual
block storage is handled by the Block Storage component.

7.2 Authenticated Data Structure

Data authenticity in a peer-to-peer system should be strongly enforced in a
peer-to-peer system because data is received from a less trusted source. We
say less trusted source because in the context of this paper, the peers in the
system are believed to be provided by a better trusted source than from an open
system. This does not prevent from peers sending faulty data, however. Data
authentication should be in place for any data intensive distributed systems.

Merkle trees [21] have been used in numerous systems to provide an authen-
ticating data structure. Secure tree based data structures have been popular
in distributed storage systems, most notably [10, 8, 18]. As such, we build a
distributed file system structure for the FTP service to access.

Files are divided in 10 kB chunks and stored in the DHT. File system struc-
ture is developed using directory blocks, inode blocks, and data blocks much
like the UNIX file system. Each block is hashed using the SHA1 hash. The
hash value is the block’s key. SHA1 hash is collision resistant so the blocks with
even the smallest difference will have a different key value. Entries in directo-
ries block reference other blocks using these hash values, so the entire filesystem
structure are said to be self-verifying.

Dividing files into blocks and distributing them over many peers has its
advantages and disadvantages. On one hand, the file is well distributed among
the peers achieving load balance, especially with large files. It also reduces the
problem of a possible bottleneck point with a large and popular file. On the
other hand, a lookup must be made for each data chunk which is a significant
network traffic overhead whereas a file stored at a single location requires only
one lookup.

One of the benefits of using secure hashes to blocks that blocks that have
same contents will have the same hash value. This means that if a file has similar
or same contents as other files in the system, the same blocks would not have to
be uploaded again. When two blocks are identical, the content hashes will also
be identical. Optimizing data transmission is critical in peer-to-peer systems
where network connections are the most limited data path. The Data Block
Storage component of Fortress FTP always checks if the data block already

exists on the local disk before proceeding with the data transfer. Unnecessary

35

transmission of data blocks can be avoided with the slight overhead of key bytes
and communication overhead.

A drawback to using this structure for a file system is that an update to a
deeply nested directory entry would require all of the directory blocks in the
directory path to be updated. This means that for an update to be atomic,
the all directory blocks making up the path of directory will require them to be
written synchronously - any changes to the file-system structure would always
require the root block to be updated. The cost of an update to a directory at
d depth would require O(d lg N). The cascading effect caused by an update is
shown in Figure 7.2. Furthermore, multi-process writes to the directory struc-
ture will need a exclusive lock to the root directory block. Assuming the root
block remains in place with a single key, then the root block could become a
bottle neck point. In order to assure consistent state of the root block, the peer
wishing to modify the root block would have to obtain a lock on it by using a

distributed form of semaphore.

/dirl
/dirl/music

/dirl/music/TooMuchRain.mp3

Figure 7.2: An update to a directory will cascade all the way up to the root
block. All the blocks must be retrieved, updated, and reinserted into DKS. The
directory block entries map to keys in DKS while the horizontal entries in the

file block indicate entries that are retrieved through Data Block Storage module.

36

7.3 Data Availability

High data availability is a essential to an FTP service. High node availability
increases data availability, but even with high availability of the nodes, the nodes
cannot be expected to be available all the time. Data redundancy therefore is
critical to the data availability in the design of the peer-to-peer FTP service.
Data redundancy must be balanced according to the expected level of churn
in the P2P system. We leave the degree of replication up to the users of the
peer-to-peer group by leaving the redundancy rate as a configurable parameter.

Two popular methods for increasing data durability in peer-to-peer systems
have been replication and erasure coding. Rodrigues and Liskov in [3] shows
that because of the computational costs and complexity it introduces to the
peer-to-peer system, erasure encoding should be avoided unless strictly required
by the system design. Its main advantage is that it provides the same level of
availability while using much less storage overhead (1 to 3-fold). Perhaps a more
compelling reason for using erasure coding over replication is that the level of
redundancy in replica-based system is much higher; maintenance traffic for the

redundancy will be thus greater in replica-based systems.

7.4 Coping with Data Migration

When nodes join, leave, or fail in a distributed hash table, the key range respon-
sibility must be adjusted to the correct nodes. In the case of DKS, newly joining
nodes receive data for their key range from the predecessor. Conversely, when
a node leaves the system, the node must move its data to its predecessor before
leaving. Replicas are also migrated to proper peers when nodes join, leave, and
fail. Essentially, dynamicity causes data migration in DKS.

In building applications over distributed hash tables, data migration caused
by dynamicity should be carefully considered. Enough bandwidth should be
available to handle the expected data migration due to dynamicity in a real
deployment scenario. Another reason against storing so much data is that in F2F
networks, node departures are not permanent and expected to be temporary.
This means that if the replication feature of the DHT can mask the temporary
departure of a few nodes, then the data migration for the replicas and the
original copy can take place at a slow rate or at a later time. This can avoid
large amounts of data transfers due to node departure/failure especially in a
data intensive system where nodes are expected to hold a large amounts of
data.

In Fortress FTP, the level of dynamicity in the system due to nodes failing

37

and departing are expected to be low. Even so, each node is expected to hold
a large quantity of data. This means that there would be a significant level
of data migration and bandwidth consumption even when a single node leaves
the system. Myriad Store [?], a distributed backup application, reduces data
migration due to dynamicity by storing only meta-data to data blocks instead
of actually storing data blocks themselves in its distributed hash table.

Using a similar approach to Myriad Store, in Fortress FTP, only the directory
structures are stored in the distributed hash table. Actual file transfers take

place between peers using a transfer protocol between peers.

7.4.1 Data Block Replication

Data blocks must be replicated. If data blocks are not available during a down-
load due to peer departure, whether it is permanent or temporary, downloads
cannot complete. In Fortress FTP, a circular identifier space represents the keys
to data blocks. Within this identifier space, every peer is assigned a contiguous
range of data blocks they are responsible for.

Each data block is content hashed using SHA1 and the resulting 160-bit key
is used as its identifier. Each peer also maintains s successors’ data blocks where

s is lg N and N is the number of peers in the system.

7.4.2 Data Maintenance

Data Maintenance is handled by the Data Block Storage layer. The data block
storage layer employs lazy replication instead of eager replication as it is done
in DKS to reduce data migration. Another reason for using lazy replication is
that a peer departure may be temporary. This is particularly true in friendly
networks where permanent departures are expected to be rare [13]. The Data
Block Storage layer estimates the number of the nodes currently participating
in the system, N, and determines the replication factor r. Currently, r is de-
termined to be 7 = lg N. The Data Block Storage layer attempts to maintain

replicas at r successors.

7.5 Load balancing

FTP service is intrinsically data intensive. Early FTP server often became
unavailable when client downloads exceeded the FTP upload capacity. Be-
cause Fortress FTP is peer-to-peer, failure of a single Fortress FTP server will

not disrupt the collective peer-to-peer network. Dividing files into chunks also

38

provides load balancing among the peers during file download. Because each
Fortress FTP peer can provide an FTP service, the outgoing bandwidth of the
FTP must also be balanced. We achieve this balance through the use of the
PASV command. In active mode of FTP data transfer, the server connects to
the client during data transfers. PASV (passive) mode, on the other hand, lets
the client connect to the server for the data transfer - this is the preferred and
default mode of most FTP clients in use today. In response to a PASV com-
mand, the server informs the client the server addresses and ports which the
client can connect to in order to download the files.

In DrFTPD [9], the load is distributed by having a master server and several
slave servers. Slave servers hold disjoint sets of files. When the RETR command
is issued, the master server locates the slave server holding the file from its
database. DrFTPD’s the master server cannot anticipate which files the client
will download, hence cannot determine which slave server address to inform
the client when entering PASV mode. DrFTPD proposes and implements the
PRET command as a solution to this problem. A few other disadvantages to
this approach is that a single point of failure still exists at the master server
and that slave servers can still become congested due to large and popular files.

In Fortress F'TP all data is virtualized and available to every single Fortress
FTP server. Having all the data available to the Fortress FTP server means
that an Fortress FTP server can return any of the other Fortress FTP servers
in response to the PASV command. In Fortress FTP, PASV command returns
the address of the server that is able to provide the highest download rate to
the client. Although in providing higher data availability and durability there
is storage overhead, storage capacity is hardly an issue due to cheap and large

storage devices.

7.6 Prototype Implementation

The authentication code for DKS and the Fortress FTP server is written entirely
in Java. The implementation is based on the Java implementation of the DKS
system. The code FTP server was based on the Apache FTP server. The
interface to the native file system within the Apache FTP server was replaced
with a distributed storage layer.

The key object in Fortress FTP for distributed storage is the DFSInput-
Stream and the DFSOutputStream, which respectively extends the InputStream
and the OutputStream interfaces. The encapsulation of these objects provide

disk-like write and read operations through DKS and DataBlockStorage.

39

Server

1. RETR foo.bar

A Fortress FTP site

Clienta

2. SEND Client a foo.bar

3. Sending foo.bar

Figure 7.3: Client server interaction in active mode. In active mode the Fortress

FTP servers can pick the server to send the file through election.

7.7 Using Fortress FTP

The command to begin the Fortress FTP server is:
% fftp keystore [-server on|off]

The Fortress FTP can be used in a number of ways. Even though every peer
in the peer group can potentially become an FTP server, this is not strictly
necessary. This is an administrative issue that is left up to the administrator(s).
Peers can choose to deactivate the server functionality to mainly provide data
storage and not the FTP service. This is particularly useful when a large amount
of storage space is required on the server while the access to the FTP service is
expected to be low.

The current implementation runs the FTP service as a separate and local
service. Future improvements could involve the FTP servers to cooperate be-
yond the data distribution level. Having the F'TP server as a separate program
does have its advantages in that the users are managed locally and therefore

giving each peer a local level of control to how the FTP service is accessed.

40

Server

A Fortress FTP site

2.193.10.66.256

3. SEND Client a foo.bar
4. Sending foo.bar

193.10.66.256

Figure 7.4: Client server interaction with PASV command. In passive mode the

client is informed the address of the server that can provide the best service.

41

Chapter 8

Evaluation

Fortress FTP’s transfer speeds are shown in figure /refevaltablel. The current
implementation does not prefetch any of the blocks which explains the low
transfer speeds. Without prefetching the overhead of connecting to a peer each
time for a new block slows down the transfer process considerably. In order to
further improve on the transfer rate, the socket connections could be kept alive
for further block requests for a specific length of time. Caching of the blocks
could improve the performance to a large extent for blocks that are frequently

requested.

Upload speed | Download speed
Local Disk 3.34 M bytes/s | 2.87 M bytes/s
Data Block Storage | 67.1 K bytes/s 27.4 K bytes/s

Table 8.1: Average transfer speeds for Data Block Storage and local disk.

As discussed in section /refxxftp, the depth of the directory tree has a direct
impact on the length of time for the modification of a single directory block to
be updated; modification to any directory block will require all of the blocks
in the directory path to be updated. This effect is further exacerbated when
directories contain large number of entries. See figure 8.2. This is a trade off in
using a self authenticating structure.

Using cryptographic hash has its advantage in quasi-randomly distributing
the hash value in the 160-bit identifier space. In a peer-to-peer system where
tens of thousands or even millions of peers are expected to be present, this is
a desirable solution. But in smaller instances of peer-to-peer systems where
the numbers of peers do not exceed in several hundred, the distribution of the

identifier space using cryptographic hash may not have enough even spread

42

Depth | Time (ms)
1 1365

5 3771

10 8541

50 42282
100 87149

Table 8.2: Time measurements for modifying directory at various depths.

in the identifier space. This is an issue that must be addressed in a real life
deployment scenario where Fortress FTP sites may be composed of very few
numbers of peers. Figure 8.3 depicts the distribution of identifier range with

lower number of peers.

Number of peers | Median of key range ratio | Std. Deviation
5 0.243 0.100
50 0.015 0.017
150 0.004 0.007
500 0.001 0.002

Table 8.3: Sample distribution of key range for various peers in the system.

The graph in Figure 8.1 shows the distribution of a 1GB file over the peers
in Fortress FTP. As expected, the variance of discrepancy between the amounts
of data peers hold reduces with as the number of peer grows. Currently, the
key range is assigned by cryptographically hashing the public key and the TP
address of the peer. To reduce this discrepancy, another method of assigning
key range to peers should be considered instead of static hashing.

Partitions in DKS have not been considered in the design of the Fortress
FTP system. This is a significant issue in real life deployment scenario because
partitions do occur and must be dealt with. In KESO distributed file system
/citekeso, the modifications to file systems are merged. Changes made during
a network partition are merged when the partitioned peer groups recombine.
Similar approach can be applied to the Fortress FTP system.

Deletion of files from the Fortress FTP has not been addressed during the
implementation. Since removal of the blocks from the peers is not critical in

transferring of files, unused blocks can be garbage collected in a less eager fasion.

43

Number of Bytes

Peer Disk Usage

120000000

100000000

80000000

60000000

40000000

20000000

50 100 150 200 250 300 350 400 450 500

Number of Peers

Figure 8.1: Peer disk usage for various number of peers.

44

Chapter 9

Conclusion

Features have been added to the DKS system that enable peers to form private
peer-to-peer networks. Forming peer-to-peer networks this way allows peers in
a group to select other peers that enter into the system. The expected result
is that the membership to the private peer-to-peer networks will be governed
by the peers already in the peer group. This concept is similar to the concept
of F2F type of networks where connects are allowed only to trusted peers. The
concept does differ from the F2F type of network in that it allows peers to invite
their peers into the group - the newly invited peers may or may not be a friend
to all peers already in the group. Although forming P2P networks this way is
not purely F2F, it has its advantages in that it remains more scalable. Certainly
if the group members are carefully managed by the members in the group, the
private DKS can be used to form an instance of a F2F network. The loosened
requirement of the private DKS can be utilized to form private overlay networks
according to overlapping preferences of peer selection of individual peers. Users
would then have to live with conflicting preferences or choose to resolve them
through out-of-band methods.

Fortress FTP is just an example application of the private DKS. Any type
of directory service or distributed applications that require key lookup is ideal
for application of DHTs. Peer membership is verified the peer group by lookup
up the peer’s public key within the system. This lookup process uses the DKS
to locate the peer’s public key.

Currently, although the membership can be given or removed, no rules or
algorithms regulate membership. That is, peers can always invite other peers
to join the group, and any peer can be removed by any other peer. Incentive
features or rules to membership could control the size of the peer group. For

example, a peer’s free rider behavior could further be discouraged if other peers

45

were simply allowed to view other peers’ performance. It would be interesting to
see how cooperation in private networks can be encouraged rather than enforced
through strict incentive mechanisms.

The group location service design sketches a system that help bootstrap peers
to their private peer-to-peer network. The bootstrap information is encrypted to
provide authenticity of the bootstrap information and to prevent non-members

from accessing peer information.

46

Bibliography

[1]
[2]

[3]

[4]
[5]

[8]

[10]

[11]

[12]

[13]

E. Adar and B. Huberman. Free riding on gnutella, 2000.

Seif Haridi Ali Ghodsi, Luc Onana Alima. Symmetirc replication for struc-

tured peer-to-peer systems, August 2005.

Rodrigo Rodrigues And. High availability in dhts: Erasure coding vs.

replication.
W. Barry. An electronic group is virtually a social network, 1997.
Bittorrent. http://www.bittorent.org.

Tan Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.
Freenet: A distributed anonymous information storage and retrieval sys-
tem. Lecture Notes in Computer Science, 2009:46-77, 2001.

Bram Cohen. Incentives build robustness in bittorrent, 2003.

Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion
Stoica. Wide-area cooperative storage with CFS. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP ’01), Chateau
Lake Louise, Banff, Canada, October 2001.

DrFTPD. http://drftpd.org.

Peter Druschel and Antony Rowstron. PAST: A persistent and anonymous
store. In HotOS VIII, May 2001.

R. Dunbar. Coevolution of neocortical size, group size and language in
humans. Behavioral and Brain Sciences, 16(4):681-735, 1993.

M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust incentive techniques

for peer-to-peer networks, 2004.

Jinyang Li Frank. F2f: reliable storage in open networks.

47

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

Ali Ghodsi, Luc Onana Alima, and Seif Haridi. Low-bandwidth topology
maintenance for robustness in structured overlay networks. In Proceedings

of the 38st Annual Howaii International Conference on System Sciences
(HICSS). IEEE Computer Society Press, 2004.

Gnutella. http://rfc-gnutella.sourceforge.net.

M. Gupta, P. Judge, and M. Ammar. A reputation system for peer-to-peer
networks, 2003.

Hales, D. and Patarin, S. How to cheat BitTorrent and why nobody does.
UBLCS, 2005.

John Kubiatowicz, David Bindel, Yan Chen, Patrick Eaton, Dennis
Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westly
Weimer, Christopher Wells, and Ben Zhao. Oceanstore: An architecture
for global-scale persistent storage. In Proceedings of ACM ASPLOS. ACM,
November 2000.

Per Brand Luc Onana Alima, Sameh El-Ansary and Seif Haridi. Dks(n, k,
f): A family of low-communication, scalable and fault-tolerant infrastruc-

tures for p2p applications, 2003.

P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information

system based on the xor metric, 2002.

Ralph Charles Merkle. Secrecy, authentication, and public key systems.
PhD thesis, 1979.

Napster. http://www.napster.com.
Overnet. http://www.edonkey2000.com/.

S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatow-
icz. Pond: The oceanstore prototype. In Proceedings of the Conference on
File and Storage Technologies. USENIX, 2003.

WASTE. http://waste.sourceforge.net/.

R. Zakon. FYI 32: Hobbes’ Internet timeline, 2005.

48

