BGP CONVERGENCE

Tawfiq Khan TCOM 610 George Mason University

The meaning of BGP Convergence

- Time for a router from un-initialized state to fully established state
 - Mostly Up Convergence
 - Mostly for a single router reload or BGP restart
- Time for route changes viewed/accepted by remote peers or global Internet
 - Up Convergence
 - Down Convergence
 - Failover to more specific or longer path

Router BGP Convergence Tuning

- Router BGP Convergence Conditions
 - All routes are accepted, installed in routing table, InQ and OutQ are zero for all peers
- Scenarios
 - Edge routers: receive 250K paths and advertise 500 prefixes
 - Peering Routers: receive 80K paths and advertise 250K prefixes to RR
 - Route reflectors: receive 400K paths and advertise 250K prefixes per clients
- Key Factors:
 - TCP operations, Router Queues, data packaging

TCP Protocol Consideration

MSS – Max Segment Size

- Carries as TCP option in SYN packet
- Cisco default: 536 bytes (RFC 791 for Packet Size < 576 bytes)
- Safe to increase to 1460 bytes for Ethernet
- Increasing MSS will reduce the number of packets to send for large number of prefix announcement
- Should be set to (Path MTU 40 bytes)

TCP Window

- Control the max number of packets before receiving acknowledge
- Default: 16 KB for Cisco

Queue Optimization

- Goal: minimize packet loss due to overflow, especially for large fan-out of BGP sessions
- Packet reception process: input hold queue (with max depth), selective packet discard (SPD) headroom for high priority packet such as control traffic, system buffer: actual storage
- Hold queue size = WindowSize/(2 * MSS) * PeerCount, "hold-queue 700 in"
- "ip spd mode aggressive", "ip spd headroom 1000" "ip spd queue min-threshold 998"
- "buffer small permanent 1000", "buffer small min-free 250", "buffer small max-free 1375"

Other Optimization

- Peer group: group all BGP sessions with the same outbound policy together -- same BGP messages for all peers in a group
- Dynamic peer group: automatic group identification by Cisco IOS
- Update packaging enhancement: build cache for each peer or update group so that NLRI for each attribute combination can be packed into a single update
- Transmit side loop detection: don't send updates if the neighbor will deny due to AS_PATH loop detection. Void for MPLS-VPN (new ORF)
- How long to converge for full internet route table? Over 5 minutes, but could be tuned down to 2 minutes

Internet BGP Convergence

Common Wisdom

- "Internet routing is robust under faults"
 - Supports path re-routing and restoration on the order of seconds
- "BGP has good convergence properties"
 - Does not exhibit looping/bouncing problems of RIP
- "Internet fail-over will improve with faster routers and faster links"
- "More redundant connections (multi-homing) to Internet will improve site fault-tolerance"
- "Bad news travels fast, good news can go slow"
- BGP has great convergence properties
 - Modified distance vector protocol: advertise full AS_PATH
 - ASPath solved the convergence and counting to infinity problems
 - Just guarantee no looping, but no fast convergence

Internet Requirements

- Replication, round-robin DNS, etc. helps reliability of inter-domain content oriented services
- Inter-domain transaction oriented services (e.g. VoIP, EBay, database commits, etc.) still pose a challenge
- IP become the ultimate platform for all communications: VoIP, VideoOverIP, triple play, 3G/4G wireless over IP, Skyper, YouTube ...
- Need to model how long it takes for the Internet to converge and fully understand Internet convergence property

Routing Protocol Convergence

- Unlike connection oriented PSTN (~30 ms), Internet does not have fast, deterministic fail-over
- Instead, each node recalculates on a hop-per-hop basis (i.e. no flooding of changes) and make independent decision
- Distance-vector algorithms (e.g. RIP, BGP) exhibit slower convergence than link state protocols
- During convergence
 - Latency, loss, out of order
 - Micro-looping possible
 - Additional update messages (CPU processing)

Does BGP always converge?

- With unconstrained policies (Griffin99, Varadhan96)
 - Possible Divergence
 - Possible to create mutually un-satisfiable policies
 - NP-complete to identify these policies in IRR
- With constrained policies (e.g. shortest path first)
 - Transient oscillations
 - BGP usually converges
 - It might take a very long time though

BGP Convergence Analysis

- Passive: Route-view project with 30+ peers with full Internet tables, including major Tier1
 - Record all BGP events over multiple years
 - difficult to determine causal relationships
 - Mostly for BGP pathologies and failures
- Active: BGP Beacon and Merit BGP instrument
 - Inject routes into geographically and topologically diverse provider BGP peering sessions (Mae-West, Japan, Michigan, London)
 - Periodically fail and change these routes (i.e. send withdraws or new attributes) in pre-determined intervals
 - Time events using ICMP echos and NTP synchronized BGP "routeviews" monitoring machines (also http gets)
 - Correlate with active ICMP data to top 100 web sites

BGP Beacon

- Inject known prefix into Internet table at pre-determined intervals and record Internet response
 - 2 hours interval with periodic announce/withdraw
- Best to NTP synchronize clock from Beacon server and route-view monitors
- 4 PSG Beacons and 8 RIPE Beacons
- PSG Beacon difference:
 - Use aggregator IP address field for timestamp (seconds since the beginning of the month in 10.x.y.x and 0.x.y.z for seconds)
 - Use aggregator ASN number for sequence: 64512 to 65635 (private ASN range)
 - Anchor prefixes: statically pin-up prefixes in the host ASN to correlate network events with Beacons events

BGP Beacons

Prefix	Source AS	Upstream	Contact	Start date
198.133.206.0/24	3927	AS2914, AS1	Randy Bush	10-Aug-2002
192.135.183.0/24	5637	AS3701, AS2914	Dave Meyer	4-Sep-2002
203.10.63.0/24	1221	AS1221	Geoff Huston	25-Sep-2002
198.32.7.0/24	3944	AS2914, AS8001	Andrew Partan	24-Oct-2002
195.80.(224+n).0/ 24	12654	Various	ris@ripe.net	30-Sep-2002

- Relative Convergence time and convergence time
- Signal duration, signal latency, and signal length
- Correlate Beacon AS instability within W minutes (= 5 minutes) window to exclude unrelated events
- Not all updates from Beacon sources are visible through all peers

PSG Beacons Result

PSG Beacons

RIP Beacons

RIPE Beacons Result

- Green Events
 - A: converge within 120 seconds with A (90.5%)
 - W: converge within 360 seconds with W (96.5%)
- Red Events
 - All events with long convergence (4.38%)
 - Mostly due to route-damping effect
- Orange Events
 - Converge to wrong type of events (1.8%), more A-Events
- Greg Events
 - Invisible events through certain peers, account for 40% of all events
 - Sudden appearance: during routing policy change?

BGP Convergence Update Burst

ISP2-ISP4 Paths During Failure

63% Av	erage: 79 (min/max 44/208) second
AS4 AS5 AS2	(35 seconds)
Withdraw	(79 seconds)
7% Av	erage: 88 (min/max 80/94) seconds
Announce AS4	AS5 AS2 (33 seconds)
Announce AS4	AS6 AS5 AS2 (61 seconds)
Withdraw	(88 seconds)
7% Av	erage: 54 (min/max 29/9) seconds
Withdraw	(54 seconds)

ISP3-ISP4 Paths During Failure

36% Average: 110 (min/max 78/135) seconds				
Announce AS4 AS5 AS	(52 seconds)			
Withdraw	(110 seconds)			
35% Average: 107 (min/max 91/133) seconds				
Announce AS4 AS1 AS3	(39 seconds)			
Announce AS4 AS5 AS3	(68 seconds)			
Withdraw	(107 seconds)			
2% Average:140.00 (min/max 120/142)				
Announce AS4 AS5 AS8 AS7 AS3	(27)			
Announce AS4 AS5AS9 AS8 AS7 A	83 (86)			
Withdraw	(140 seconds)			

27% Other

Typical BGP Withdraw

- 7/5 19:33:25 Route <u>**R**</u> is **withdrawn**
- 7/5
 19:34:15
 AS6543 announce
 R 6543
 66665
 8918
 1
 5696
 999
- 7/5
 19:35:00
 AS6543 announce **R** 6543
 66665
 8918
 67455
 6461
 5696
 999

. . .

- 7/5
 19:35:37
 AS6543 announce **R** 6543
 66665
 4332
 6461
 5696
 999
- 7/5 19:35:39 AS6543 announce <u>R</u> 6
- 7/5
 19:35:39
 AS6543 announce <u>R</u>
 6543 66
- 7/5 19:35:52 AS6543 **announce <u>R</u>**
- 7/5 19:36:00 AS6543 announce <u>R</u>

- 6543 66665 5378 6660 67455 6461 5696 999
- <u>**R**</u> 6543 66665 65 6461 5696 999
 - 6543 66665 6461 5696 999
 - 6543 66665 5378 6765 6660 67455 6461 5696 999

7/5 19:38:22 AS6543 withdraw <u>R</u>

Merit -- Convergence Time

- Tup -- A new route is advertised
- Tdown -- A route is withdrawn (i.e. single-homed failure)
- Tshort -- Advertise a shorter/better ASPath (i.e. primary path repaired)
- Tlong -- Advertise a longer/worse ASPath (i.e.primary path fails)

Merit Result

- Routing convergence requires an order of magnitude longer than expected (10s of minutes)
- Routes converge more quickly following Tup/Repair than Tdown/Failure events ("bad news travels more slowly")
- Curiously, withdrawals (Tdown) generate several times the number of announcements than announcements (Tup)

Withdraw Convergence

Seconds Until Convergence

BGP Convergence

Failure, Fail-over Convergence

Seconds Until Convergence

Withdraw Convergence

- 80% of withdraws from all ISPs take more than a minute
- For ISP4, 20% withdraws took more than three minutes to converge
- Failures (Tdown) and short-long fail-overs (e.g. primary to secondary path) also similar
 - Slower than Tup (e.g. a repair)
 - 60% take longer than two minutes
 - Fail-over times degrade the **greater** the degree of multi-homing!
- Internet averages 3 minutes to converge after failover
 - Some multihomed failovers (short to long ASPath) require 15 minutes

ICMP Response after Repairs

End2end Impact after Fail-over

Route damping effect

- Route damping: deal with long time scale instability
- MinAdvTimeInterval: Route short time instability, delay updates to batch consecutive updates to reduce updates
- No matter how large MinAdvTimeInterval, possible to induce damping due to single update
- Measured from route-view and use default Cisco and Juniper parameters: on average 5%, but up to 45% of updates might be suppressed!
- Route damping might be the main reason for the extended delay convergence

PSG -- Route-damping

Figure 10: Overall percentage of suppressed signals due route flap damping for each Beacon and on a per peer basis for Cisco and Juniper.

BGP Model

- If complete fully-mesh ASN graph, N! upper theoretic bound and 30*(N-3) lower bound
- In practice, Internet has hierarchy and customer/provider/sibling relationships
 - Bounded by length of longest possible path
- ASPath limits "infinity" to the width of the Internet
 - <u>Monotonically</u> increasing
 - Upper bound?

BGP Model

If we assume

- 1.unbounded delay on BGP processing and propagation
 2.Full BGP mesh BGP peers
 3.Constrained shortest path first selection algorithm
- There exists possible ordering of messages such that BGP will explore all possible ASPaths of all possible lengths
- BGP is O(N!), where N number of default-free BGP speakers

Alternative Path Enumeration

- BGP monotonically increasing. Multiple (N!) ways to represent a path metric of N.
- AS-PATH Enumerations
 - · 2117 5696 2129
 - · 2117 1 5696 2129
 - · 2117 2041 3508 3508 4540 7037 1239 5696 2129
 - 2117 1 2041 3508 3508 4540 7037 1239 5696 2129
 - 2117 2041 3508 3508 4540 7037 1239 6113 5696 2129
 - 2117 1 2041 3508 3508 4540 7037 1239 6113 5696 2129
- BGP "solved" RIP routing table loop problem by making it exponentially worse...

MRAI Timers

- MinAdvertiseInterval: timer to limit the numbers of advertisement updates per prefix. Recommend by RFC and only apply to advertisement eBGP; Usually not applied to iBGP and route withdraw
- Small timer (Juniper): more updates, short convergence time
- Longer timer (Cisco: 30 seconds): fewer updates, longer convergence time
- Implementation of MinRouteAdver timer leads to 30 second rounds
 - Time complexity is O(n-3)*30 seconds
 - State/Computational complexity O(n)
 - At its best, BGP performs as well as RIP2 (but uses exponentially more memory in the process)

MRAI Timer

- Minimum interval between successive updates sent to a peer for a given prefix
 - Allow for greater efficiency/packing of updates
 - Rate throttle
- Applied only to announcements (at least according to BGP RFC)
- Applied on (prefix destination, peer) basis, but implemented on (peer) basis
- 30*(N-3) delay due to creation mutual dependencies. Provide proof that N-3 rounds necessarily created during bounded BGP MinRouteAdver convergence
- Rounds due to
 - Ambiguity in the BGP RFC and lack receiver loop detection
 - Inclusion of BGP withdrawals with MinRouteAdver (in violation of RFC)

Findings

- Non-deterministic ordering of BGP update messages leads to
 - Transient oscillations
 - Each change in FIB adds delay (CPU, BGP bundling timer)
 - At extreme, convergence triggers BGP dampening
- Given best current routing practices, inter-domain BGP convergence times degrade exponentially with increase in the degree of interconnectivity for a given route and the degree of inter-connectivity (multi-homing, transit, etc) is increasing

MRAI Timer

- Cisco default: 30 seconds
- ATT BGP Convergence Simulations Results:
 - Exists optimal MRAI Mu, if above, total updates for convergence is stable
 - Exists optimal MRAI Mt where convergence time is minimized, if above, average convergence time increases linearly
 - Mt increase with average router load, and an optimal MRAI can significantly reduce convergence time (but network dependent)
- Recent Simulations Results
 - Optimal MRAI for most of network today might be between 1-5 seconds

Impact to Reality

- Great research result and provide a lot of insight into Internet BGP dynamics
- Engage talks with Cisco/Juniper to improve the behaviors and convergence
- But from practical point of view, people care more on reachability rather than absolute convergence time
- More BGP research in
 - Internet routing simulations based different timers and polices
 - Alternative routing mechanism design simulations
 - Reality check on voice/jitter/video due to route convergence and fail-over needed