ISP SERVICES AND PEERING

TCOM610-BGP Tawfiq Khan George Mason University

ISP Services

- Dedicated Internet Access
 - Speeds from 56 kbps to OC12 and OC48
 - Predictable access, always available
 - Most expensive access option
- Frame Relay and ATM Access
 - Greater range of access speeds due to statistical multiplexing and therefore pricing options
 - Either statically provisioned (mostly for primary access) or dynamically allocated (often for backup)
- VPN Services
 - Virtual private network connecting office and branches in different locations

Dial-up Service

- Connectivity on demand
 - Traditional POTS lines
 - Limited speed, up to 56 kb/s
- ISDN
 - BRI at 128 kb/s and PRI at 1.5 Mb/s
 - Expensive and no longer offered for residential customers (still available for small business)
- Wholesale Dial
 - Offered on behalf of other dial networks like AOL
 - Provide modem port, aggregate and deliver traffic to designated facility

Broadband: DSL and CM

DSL and variants

- Uses existing phone copper wiring
- Typically 384 kb/s up, 1.5 Mb/s down
- Higher speeds available now
- Distance from central office to site is critical
- Cable modems
 - Uses cable TV coax cable, often with optical transport to neighborhood (hybrid fiber/coax – HFC)
 - Typically 500 kb/s up, 2 Mb/s down
 - DOCSIS standards for modem technology
 - Combined with other services like VoIP

Dedicated Hosting Services

- Hosting sites
 - Large, reliable server farms
 - High speed internal networks
 - High speed external access
 - Secure physical locations
- Sites located at convenient locations on the provider network

Other Services

- Email and news
- Web service and database (ASP)
- Virtual Private Networks (VPNs)
- IP multicast
- Managed Security and Firewall

ISP Service Pricing

- Highly variable pricing
 - Often due to available infrastructure
 - Package features also vary
- Bundled packages for multiple sites often advantageous because of service consistency
- Usually billed based on combined 95th usage of all ports of higher direction of inbound or outbound
 - May require per port charge for small traffic volume
 - Avoid per port charge by minimum committed usage
 - Prices / MBPS has dropped significantly over last a few years (300 Mbps => 10 Mbps/month)

SLA

- Service Level Agreements (SLAs) or Service Level Guarantees (SLGs)
- Specify performance and availability levels
 - Details of specification and penalties
 - Monitoring and reporting responsibilities
 - If SLA is violated, customer may get service credit
- Typically include measures such as packet loss, delay, availability, maintenance/outage notification requirements
 - Typically: North-America < 55 ms delay, < 0.03% packet loss, 99.9% delivery rate or availability

Provider Selection

- Physical network topology
 - Network bottlenecks and subscription ratios
 - Level of network and element redundancy
 - Peerings with other networks (Are they Tier1?)
- Distances
- Traffic agreements
- Physical Connections Need network map with connections
- Consistent and adequate bandwidth for traffic paths, with redundancy
- High speed backbone required
- High speed links to other providers needed (peering)

ISP Bottlenecks

- Price, Network Connectivity, and Network Redundancy
- Networks defined by the weakest links
 - Over-subscription of critical resources
 - 5:1 ratio a typical target, but 8:1 or 10:1 is acceptable
 - Small tail circuits to POPs or customers
 - Critical resources (e.g., server facilities) need to be located on high bandwidth infrastructure
- ISP connectivity: Tier1/Tier2 how many AS away from major networks and their customers?
- ISP's Monitoring extremely important

Network Redundancy

- Network Redundancy
 - Redundancy necessary to enable alternate routes despite link failures and direct or NAP peering problems
 - Multiple POP connections and peerings desirable
 - Usually provided via global redundancy, rather than per site
- Sparing plan important
 - On-site critical component supply
 - Manage the spares: spare ratio
 - Depends on components and MTBF (Mean Time Between Failures)
- Sparing often done in concert with vendor
 - Increases MTTR (Mean Time To Repair) but often acceptable and economical

Distance and Traffic Agreement

- Router hops are significant but link speeds, network technologies, and geography are also important
- Number of autonomous systems traversed
 - Affected by direct peerings and NAP peerings
 - Reasonable measure of performance since losses and delays often happen at boundaries
- Larger ISPs choose peerings carefully for direct and NAP interconnections
 - smaller ISPs are often customers of large ISPs and pay for transit
- Usually aggregate capacity and selected peering policy information available for review by customers

Transit vs Peering

- Transit
 - Use your ISP to get to other networks not just ISP's customers, but whole internet
 - Receive full Internet route, partial routes plus default or default only from ISP
 - Pay ISP monthly based on 95th of the total Inbound or Outbound traffic volume
 - Usually cold-potato routing from ISP and not necessarily consistent routing
 - Send traffic to your ISP with traffic destined to anywhere in Internet
- Peering
 - Only receive other ISP's customer routes ONLY
 - May not use other network to transit to other networks
 - Two flavors: Settlement-free peering or paid peering (\$\$)
 - Usually require consistent route announcement, traffic volume and ratio requirements, hot-potato routing, NOC support and similar network size

Transit and Peering

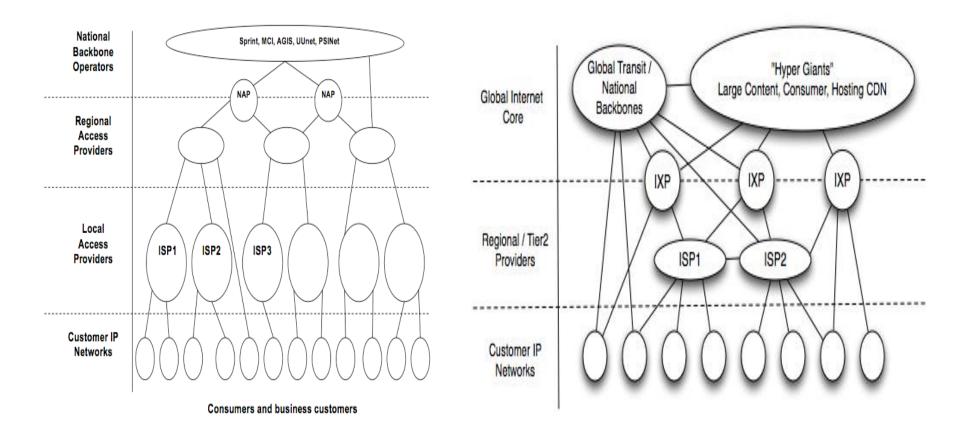
- Category of Networks
 - Content networks: Yahoo, Microsoft, Google
 - Eyeball networks: MSOs (Comcast, Cox, TWC etc), RBOCs (Verizon, SBC, Southwest Bell, USWest etc), AOL, MS-MSN
 - Based on classic client-server model, but in new Peer2Peer domain, everyone is client AND server
 - New broadband changes the landscape and the categories of the networks
- Peering Requirements
 - Network Size and Geographical Distributions: OC48 US backbone with at least 15 major cities
 - Traffic Volume: at least 1 Gbps traffic exchange
 - Traffic Ratio: usually 1:2 or 1:1.5 (balanced in/out traffic)
 - Operations: 7x24 NOC, AUP, Anti-SPAM etc

Verizon Business SF Peering Requirements

- Geographic Scope: 50% of its regions (25 states)
- Traffic Exchange Ratio: < 1.8:1
- Backbone Capacity: OC192 in US, Oc48 in EU, OC12 in AS
- Traffic Volume: 1.5 Gbps in US, 150 Mbps in EU, 30 Mbps in AS
- Transit Autonomous Systems: 1500 Unique AS in US, 100 Unique AS in EU, and 10 Unique AS in AS
- Operations Reqs: 7x24 NOC, cold potato routing, consistent route announcements, redundancy for failure, response for security breach or abuse

Peering

- History of peering
 - Initial a few separate networks interconnected in some public peering points
 - Later NSF MAE public peering facility
 - Due to rapid growth, public peering become bottlenecks of network performance
 - Then the beginning of direct or private peering
- Public Peering
 - Locations: MAE-EAST, MAE-WEST, PAC-BELL, Ameriwest
 - Peer with shared media such as FDDI ring, FE/GE Ethernet
 - Easy to peer with all parties in the facility
 - Still important internationally, but not in USA
- Private Peering
 - Two networks connects with dedicated link in multiple locations
 - Exchange network's customer routes over dedicated link
 - For better performance and usually settlement-free


Peering

- US primary peering locations
 - Eight locations: Seattle, San Jose, Los Angle, Dallas, Chicago, New York, Washington DC, and Atlanta
- Equinix and PAIX Facilities
 - All Tier1 and major networks in the same building
- Tier1
 - Networks that are transit-free and default-free
 - Historically US-centric criteria
 - Includes: att/SBC, Sprint, Verizon/Uunet, Level3, Qwest, ATDN, and possibly Savvis, Verio, Global Crossing
 - Directly peer with each other to get whole Internet routes
 - It will evolve as Asia-Pacific and Europe become more important
- Tier2
 - At least buy transit from one of the tier1 ISP
 - May be combination of settlement-free peering, paid peering and limited transit
 - MSO, RBOC, Regional/New Networks,

Peering Evolution

- Dan Golding: Peering Evolution
 - http://www.nanog.org/mtg-0302/golding.html
- Bill Norton: Peering Ecosystems
 - http://www.nanog.org/mtg-0405/pdf/norton.pdf

Internet Architecture Evolution

ISP Service BGP Community

- RFC1998 BGP Community Application
- ISP may use BGP community to implement their customer BGP policy
 - No need to customize routing policy per customer
 - Standardize ISP policy implementation
 - No operator involved if customers want to implement different policy
 - More granulates on BGP policy
 - Could be per prefix rather than per AS
 - Facilitate the easy implementation of highly sophisticated routing policy
 - Move away from simple model of ISP routing policy

ISP BGP Community

- Typical application for BGP community
 - Change local-pref for customer routes
 - · Lower or raise your route's local-pref within ISP
 - May or may not allow customer to lower than peer route's local-pref
 - Suppress route announcement to other networks
 - Don't want specific peer of ISP to see its route
 - Customer controlled partial transit or paid peering
 - Control AS-PATH prepend
 - Could be done on per peer base and for limited subset of prefix
 - Customer triggered remote blackhole
 - Drop attack traffic at ISP border
 - Enable by customer at real-time

Example Policy (AS1000)

- Change local-preference value
 - default: customer local-pref=300, peer local-pref=100
 - 1000:250 Set local preference of routes to 250
 - 1000:350 Set local preference of routes to 350
- Prepend to ISP's peers
 - 65001:ASN Prepend once to peer ASN
 - 65001:0 Prepend once to all peers
 - 65002:ASN Prepend twice to ASN
 - 65002:0 Prepend twice to all peers
 - 65003:ASN Prepend thrice to ASN
 - 65003:0 Prepend thrice to all peers

Example Policy (AS1000)

- Suppress/Leak routes to peers:
 - 65000:0 Suppress route to all peers
 - 65000:ASN Suppress route to ASN
 - 65111:ASN Leak route to ASN (that was otherwise suppressed)
- Customer Triggered Blackhole
 - 1000:9999 Blackhole the prefix must be more specific than /27

Example Implementation

```
route-map FR-20001-1 permit 10
match ip address prefix-list FR-20001-1
match community LOCALPREF250
 set local-preference 250
 set com-list OURCOMS delete
 set community 1000:11000 additive
route-map FR-20001-1 permit 20
match ip address prefix-list FR-20001-1
match community LOCALPREF350
 set local-preference 350
 set com-list OURCOMS delete
 set community 1000:11000 additive
route-map FR-20001-1 permit 30
match ip address prefix-list FR-20001-1
 set local-preference 300
 set com-list OURCOMS delete
 set community 1000:11000 additive
ip community-list expanded LOCALPREF250 permit _1000:250
ip community-list expanded LOCALPREF350 permit 1000:350
ip community-list expanded OURCOMS permit 1000.*
```

Exercise

- Implement AS-PREPEND ISP community policy using Cisco IOS
- Implement community-based selective route-leaking BGP policy
- Implement customer triggered blackhole BGP policy

Troubleshooting BGP

- Download Cisco BGP troubleshooting guide from NANOG site: <u>http://www.nanog.org/mtg-0310/pdf/smith.pdf</u>
- This Cisco guides provide lots of examples and detailed cases
- First on bringing up BGP session
 - Configured with same parameters? (AS, IP Address, BGP version etc)
 - Have direct IP connectivity to other side?
 - If peered with loopback, ebgp-multihop?
 - eBGP vs iBGP? TTL?
 - Is there layer 2 MTU issue?
 - Is there ACL or firewall in between?
 - MD5 password match?
 - Show ip bgp sum | show log
 - Show tcp all brief
 - Debug ip bgp | debug ip tcp transactions
 - Debug ip bgp update ACL#

Troubleshooting BGP

- Then on route announcements
 - Originate your routes in BGP?
 - Redistribute routes into BGP?
 - Check your BGP table and IP routing table
 - Sh ip route x.x.x.x, sh ip bgp x.x.x.x
 - Check your policy and BGP announcements
 - Show ip bgp neighbor x.x.x.x received-routes | advertised-routes | routes
 - Only best BGP routes are exchanged
 - Configure send-community? (no sent by default)
 - Clear BGP session (soft-reconfig or route-refresh)
 - Check syntax on your policy
 - Regex, route-map, multiple match, default deny etc

Missing Routes

- Customer see partial routes must be IBGP full mesh problem
 - Better to use peer-group and RR
- Inconsistent route selection: MED problem cause inconsistent route selection, not converging
 - Deterministic MED Order all paths from the same AS first
 - BGP best-path compare-router-id to ignore time-dependency
- Route not marked for not-synchronized; will not use unless synchronized
- Persistent route oscillation problem: next hop must NOT learn from BGP so that you have to advertise your next-hop reachability through IGP;
- Maximum-paths tells router to reset next-hop to itself may cause problem in confederation

Route-view Servers

- http://www.routeviews.org
- To obtain real-time information about the global routing system
 - Peer with all major providers
 - Free read access to all peer's routing tables
 - Historic archive of all BGP routes and events
 - Become major data resources for BGP academic study
 - Several BGP analysis tools based on route-view data
 - CIDR report, BGP dynamics, Skitter etc
 - Important tool when troubleshooting how other network see your routes
- Other provider-only route servers with limited commands
- Major route servers listed under <u>http://www.traceroute.org</u> and <u>http://www.bgp4.as</u>

Looking Glass

- Similar to route-view, to provide user capability to verify how other networks route
- Allow you to troubleshoot without calling your ISP
- Typically implemented by providers to facilitate customer or peers routing troubleshooting
 - Usually in different locations of their networks
- Run different commands
 - Ping, traceroute, show ip bgp
- Best source: <u>http://www.traceroute.org</u>
- Use Cisco troubleshooting guide in NANOG archive!